Matching science to reality: how to deploy a participant-driven digital brain health platform

Author:

De Anda-Duran Ileana,Hwang Phillip H.,Popp Zachary Thomas,Low Spencer,Ding Huitong,Rahman Salman,Igwe Akwaugo,Kolachalama Vijaya B.,Lin Honghuang,Au Rhoda

Abstract

IntroductionAdvances in digital technologies for health research enable opportunities for digital phenotyping of individuals in research and clinical settings. Beyond providing opportunities for advanced data analytics with data science and machine learning approaches, digital technologies offer solutions to several of the existing barriers in research practice that have resulted in biased samples.MethodsA participant-driven, precision brain health monitoring digital platform has been introduced to two longitudinal cohort studies, the Boston University Alzheimer's Disease Research Center (BU ADRC) and the Bogalusa Heart Study (BHS). The platform was developed with prioritization of digital data in native format, multiple OS, validity of derived metrics, feasibility and usability. A platform including nine remote technologies and three staff-guided digital assessments has been introduced in the BU ADRC population, including a multimodal smartphone application also introduced to the BHS population. Participants select which technologies they would like to use and can manipulate their personal platform and schedule over time.ResultsParticipants from the BU ADRC are using an average of 5.9 technologies to date, providing strong evidence for the usability of numerous digital technologies in older adult populations. Broad phenotyping of both cohorts is ongoing, with the collection of data spanning cognitive testing, sleep, physical activity, speech, motor activity, cardiovascular health, mood, gait, balance, and more. Several challenges in digital phenotyping implementation in the BU ADRC and the BHS have arisen, and the protocol has been revised and optimized to minimize participant burden while sustaining participant contact and support.DiscussionThe importance of digital data in its native format, near real-time data access, passive participant engagement, and availability of technologies across OS has been supported by the pattern of participant technology use and adherence across cohorts. The precision brain health monitoring platform will be iteratively adjusted and improved over time. The pragmatic study design enables multimodal digital phenotyping of distinct clinically characterized cohorts in both rural and urban U.S. settings.

Publisher

Frontiers Media SA

Reference74 articles.

1. Alzheimer's Disease Data Initiative (ADDI) - Transforming Research2022

2. A critical review on medical imaging techniques (CT and PET scans) in the medical field;Al-Sharify;IOP Conf. Series Mater. Sci. Eng.,2020

3. 70-year legacy of the Framingham Heart Study;Andersson;Nature Rev. Cardiol.,2019

4. Test–retest stability on the WRAT-3 reading subtest in geriatric cognitive evaluations;Ashendorf;J. Clin. Exp. Neuropsychol.,2009

5. Correlation of a mobile-based cognitive test app with traditional neuropsychological tests in a community-based cohort;Au;Alzheimers Dementia,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3