Identifying priority sites for the on-farm conservation of landraces and systematic diversity monitoring through an integrated multi-level hotspot analysis: the case of potatoes in Peru

Author:

Dawson Tamsyn,Juarez Henry,Maxted Nigel,de Haan Stef

Abstract

IntroductionEffective monitoring of the in situ conservation status and change dynamics of landrace populations in their centers of origin ideally requires the identification of sites that are complementary in terms of the richness, uniqueness and coverage of genetic diversity.MethodsWe applied a 4-step approach to identify sites of high potato landrace diversity which will guide the set-up of a network of complementary prospective conservation observatories in Peru, the potato center of origin. A GIS mapping approach was used to determine which combination of sites would provide the most comprehensive and complementary genepool coverage. A landrace inventory was developed from 49 sources, comprising 47,272 landrace records, 97.1% with coordinates, which was used to derive landrace, cultivated species, and cultivar group richness. Data on known indicators of agrobiodiversity, including potato wild relative concurrence, cultivated area, ecogeographic diversity, and ethnolinguistic diversity were included in the spatial overlay analysis, which was used in conjunction with expert opinion data to provide further insight to hotspot selection.ResultsThirteen hotspots with high, unique, and complementary levels of landrace diversity were identified. We recommend that robust baselines are established, documenting current diversity in these sites using semi-standardized methods and metrics for future tracking.DiscussionOur results, while being the most robust of their kind to date, were inevitably affected by data gaps, infrastructure and hotspot biases. New documentation efforts should record landrace diversity in uncovered regions, as well as explore complementary mechanisms to track the conservation status of unique endemic landraces that occur in coldspots.

Funder

Consortium of International Agricultural Research Centers

Publisher

Frontiers Media SA

Subject

Management of Technology and Innovation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3