Examining leopard attacks: spatio-temporal clustering of human injuries and deaths in Western Himalayas, India

Author:

Shivakumar Shweta,Carricondo-Sánchez David,Athreya Vidya,Odden Morten,Dhiman Sat Pal,Vaidyanathan Srinivas,Karanth Krithi K.

Abstract

Shared spaces in Africa and Asia accommodate both humans and big cats. This engenders rare but distinctive cases of human fatalities by lions, tigers, and leopards. Among big cats, leopards have the widest range and occur even among high densities of humans. This increased potential for encounters with humans results in attacks, exemplified most by India where 50% of the states report human injuries and deaths due to leopards. Himachal Pradesh (HP) state reported 30 lethal and 287 non-lethal leopard attacks on humans per year between 2004 – 2015 (N=317). Identifying patterns in big cat attacks on people facilitates targeted interventions for decreasing such fatalities. This study aims to detect if leopards are cluster-causing agents of human injuries and deaths. We identify the patterns of leopard attacks on humans in Himachal Pradesh by examining the following questions: (a) do leopard-attributed attacks on humans cluster in space and time? and among the leopard-attributed attacks (b) do unprovoked attacks on humans cluster spatio-temporally? and (c) what environmental factors are associated with the clustered leopard attacks on humans? We employed a space-time permutation scan statistic commonly used in epidemiology to test for spatio-temporal clustering of leopard attacks. Attacks were spread across 75% (~42,000 km sq.) of HP in 11 out of 12 districts. We found that 23% of attacks clustered into 12 significant spatio-temporal clusters. Nearly 14% of the leopard-attributed attacks (N=317) were unprovoked and attacks displaying “predatory” signs did not form significant clusters. Binomial regression models were run to test association of eight environmental factors with clustered attacks. We found that leopard-attributed attacks farther away from the protected area boundary and closer to the district boundary had higher probability of clustering. The framework developed in this study to identify the outbreak of unprovoked leopard attacks confirms the absence of dedicated “man-eaters” in the study region. This approach can be applied to adaptively manage human-wildlife conflict and it also demonstrates the utility of scan statistic in ecological research.

Publisher

Frontiers Media SA

Subject

Management of Technology and Innovation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3