Micropropagation and assessment of genetic stability of Dendrobium transparens Wall. Ex Lindl. using RAPD and ISSR markers

Author:

Joshi Pusp Raj,Pandey Sushma,Maharjan Lasta,Pant Bijaya

Abstract

IntroductionDendrobium species have been widely used for many health disorders since ancient times. However, due to unrelenting collection to meet the increasing demand for their use in medication and other health products, the natural habitats of medicinal Dendrobium transparens have been devastated and are on the verge of extinction.MethodsAn efficient in-vitro propagation protocol for Dendrobium transparens using seed derived protocorms was established and genetic homogeneity of the in-vitro regenerants and the wild plant was studied. ResultsThe maximum seed germination was observed in Full strength Murashige and Skoog medium (FMS). Induction of protocorms were achieved on basal as well as half-strength MS medium. The highest number of shoot (11.9 shoots/explant) was achieved in half MS medium fortified with 100 mL/L coconut water in addition with Benzyl amino purine (BAP) 1 mg/L and Kinetin 2 mg/L. Further, elongated shoots were transferred to full and half strength MS root initiating medium supplemented with different concentration of auxins. However, a maximum of (8.3 ± 0.6, 4.9 ± 0.1 cm) roots were achieved in full MS medium fortified with 100 mL/L coconut water and Napthalene acetic acid (NAA) 1.5 mg/L. Ten rapid Random Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeats (ISSR) primers were used to analyze genetic stability among in-vitro and mother plant. RAPD primers produced a total of 23 fragments while ISSR primers produced a total of 16 fragments. ConclusionThe amplified bands of all the samples of in-vitro plants were similar to bands of mother plant. The present research reported here is indicating the applicability of tissue culture for true-to-type plant production and conservation of D. transperens.

Publisher

Frontiers Media SA

Subject

Management of Technology and Innovation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3