The effects of the decline of a keystone plant species on a dune community plant-pollinator network

Author:

Sandacz Dan,Vitt Pati,Knight Tiffany M.,CaraDonna Paul,Havens Kayri

Abstract

Ecological communities are maintained through species interactions, and the resilience of species interactions is critical to the persistence of natural communities. Keystone species play outsized roles in maintaining species interaction networks, and within plant-pollinator communities are high priorities for conservation. The loss of a keystone plant from a plant-pollinator network is expected to cause changes to network structure and composition of pollinator species, with the potential to cause secondary losses of plants and pollinators. To understand how the unmanipulated decline of a keystone plant affects the structure and composition of its network, we studied the plant-pollinator interactions of a Lake Michigan dune plant community where the population of the keystone plant, Cirsium pitcheri, is in rapid decline. The network prior to C. pitcheri decline (2016) was compared to the network as C. pitcheri continued to decline (2021 and 2022) in response to habitat loss. We find evidence that the loss of C. pitcheri altered network structure such that the community may be more sensitive to perturbations. Furthermore, changes in the composition of pollinators were explained by species turnover to a greater extent than by interaction rewiring, including the loss of bumblebees. Short-term negative consequences based on the changes to network structure and composition might lead to long-term effects on the persistence of the dune community. Our study exemplifies that the decline of a keystone plant can have negative implications for conservation of a plant-pollinator community. Using an interaction network framework to assess plant-pollinator communities has potential to develop strategies for best conservation and restoration practices in habitats vulnerable to habitat loss and disturbance.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3