Acoustic estimation of the manatee population and classification of call categories using artificial intelligence

Author:

Schneider Sebastian,von Fersen Lorenzo,Dierkes Paul Wilhelm

Abstract

The population sizes of manatees in many regions remain largely unknown, primarily due to the challenging nature of conducting visual counts in turbid and inaccessible aquatic environments. Passive acoustic monitoring has shown promise for monitoring manatees in the wild. In this study, we present an innovative approach that leverages a convolutional neural network (CNN) for the detection, isolation and classification of manatee vocalizations from long-term audio recordings. To improve the effectiveness of manatee call detection and classification, the CNN works in two phases. First, a long-term audio recording is divided into smaller windows of 0.5 seconds and a binary decision is made as to whether or not it contains a manatee call. Subsequently, these vocalizations are classified into distinct vocal classes (4 categories), allowing for the separation and analysis of signature calls (squeaks). Signature calls are further subjected to clustering techniques to distinguish the recorded individuals and estimate the population size. The CNN was trained and validated using audio recordings from three different zoological facilities with varying numbers of manatees. Three different clustering methods (community detection with two different classifiers and HDBSCAN) were tested for their suitability. The results demonstrate the ability of the CNN to accurately detect manatee vocalizations and effectively classify the different call categories. In addition, our study demonstrates the feasibility of reliable population size estimation using HDBSCAN as clustering method. The integration of CNN and clustering methods offers a promising way to assess manatee populations in visually challenging and inaccessible regions using autonomous acoustic recording devices. In addition, the ability to differentiate between call categories will allow for ongoing monitoring of important information such as stress, arousal, and calf presence, which will aid in the conservation and management of manatees in critical habitats.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3