Using Participatory System Dynamics Modeling to Address Complex Conservation Problems: Tiger Farming as a Case Study

Author:

Rieder Erica,Larson Lincoln R.,'t Sas-Rolfes Michael,Kopainsky Birgit

Abstract

Conservation practitioners routinely work within complex social-ecological systems to address threats facing biodiversity and to promote positive human-wildlife interactions. Inadequate understanding of the direct and indirect, short- and long-term consequences of decision making within these dynamic systems can lead to misdiagnosed problems and interventions with perverse outcomes, exacerbating conflict. Participatory system dynamics (SD) modeling is a process that encourages stakeholder engagement, synthesizes research and knowledge, increases trust and consensus and improves transdisciplinary collaboration to solve these complex types of problems. Tiger conservation exemplifies a set of interventions in a complex social-ecological system. Wild tigers remain severely threatened by various factors, including habitat constraints, human-wildlife conflict, and persistent consumer demand for their body parts. Opinions differ on whether commercial captive tiger facilities reduce or increase the threat from poaching for trade, resulting in policy conflict among diverse stakeholder groups. This paper explains how we are working with international conservation partners in a virtual environment to utilize a participatory SD modeling approach with the goal of better understanding and promoting coexistence of humans and wild tigers. We highlight a step-by-step process that others might use to apply participatory SD modeling to address similar conservation challenges, building trust and consensus among diverse partners to reduce conflict and improve the efficacy of conservation interventions.

Publisher

Frontiers Media SA

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3