Author:
van der Walt Karin,Nadarajan Jayanthi,Mathew Liya,Bettoni Jean C.,Souza Juliana A.
Abstract
IntroductionSyzygium maire is a threatened Myrtaceae tree species endemic to New Zealand. Due to its highly recalcitrant seed, cryopreservation is the only viable long-term ex situ conservation option for this species. Our previous attempts to cryopreserve the embryonic axis (EAs) of S. maire were unsuccessful but did provide a better understanding of desiccation behavior, biochemical composition, oxidative status, and ultrastructural changes associated with desiccation in EAs.MethodsWe incorporated this knowledge with biophysical information to investigate two advanced cryopreservation technologies: a droplet vacuum infiltration vitrification (DVIV) method and a novel metal-mesh vacuum infiltration vitrification (MVIV) method using Plant Vitrification Solution 2 (PVS2) for cryopreservation of the EAs.ResultsThe PVS2 treatment at room temperature (~20°C) proved phytotoxic with extended PVS2 incubation significantly reducing EA survival. No EAs survived cryopreservation using DVIV, however MVIV resulted in post-cryopreservation survival of up to 19% following PVS2 incubation for 20 min. Biophysical thermal analysis using Differential Scanning Calorimetry revealed a 15-fold reduction in ice crystallization following incubation in PVS2 for 20 min or more, with all freezable water removed after 60 min incubation.DiscussionThese results present a significant advance in being able to successfully cryopreserve S. maire EAs. The findings from this study will aid the development of cryopreservation protocols for other extremely recalcitrant seeded species, many of which are threatened with extinction due to climate change, plant pathogens, and habitat destruction.
Subject
Nature and Landscape Conservation
Reference60 articles.
1. Seed storage studies on Syzygium cuminii;Anandalakshmi;Kajian penyimpanan biji benih Syzygium cuminii.,2005
2. Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis;Benelli;Biotechnol. Adv.,2013
3. Cryopreservation of phytodiversity: A critical appraisal of theory & Practice;Benson;Crit. Rev. Plant Sci.,2008
4. Cryopreservation theory;Benson,2008
5. Use of thermal analysis in the evaluation of cryopreservation protocols for Ribes nigrum L. germplasm;Benson;CryoLetters,1996
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献