Hurdles to developing quantitative decision support for Endangered Species Act resource allocation

Author:

Iacona Gwenllian D.,Avery-Gomm Stephanie,Maloney Richard F.,Brazill-Boast James,Crouse Deborah T.,Drew C. Ashton,Epanchin-Niell Rebecca S.,Hall Sarah B.,Maguire Lynn A.,Male Tim,Newman Jeff,Possingham Hugh P.,Rumpff Libby,Runge Michael C.,Weiss Katherine C. B.,Wilson Robyn S.,Zablan Marilet A.,Gerber Leah R.

Abstract

The U.S. Fish and Wildlife Service oversees the recovery of many species protected by the U.S. Endangered Species Act (ESA). Recent research suggests that a structured approach to allocating conservation resources could increase recovery outcomes for ESA listed species. Quantitative approaches to decision support can efficiently allocate limited financial resources and maximize desired outcomes. Yet, developing quantitative decision support under real-world constraints is challenging. Approaches that pair research teams and end-users are generally the most effective. However, co-development requires overcoming “hurdles” that can arise because of differences in the mental models of the co-development team. These include perceptions that: (1) scarce funds should be spent on action, not decision support; (2) quantitative approaches are only useful for simple decisions; (3) quantitative tools are inflexible and prescriptive black boxes; (4) available data are not good enough to support decisions; and (5) prioritization means admitting defeat. Here, we describe how we addressed these misperceptions during the development of a prototype resource allocation decision support tool for understanding trade-offs in U.S. endangered species recovery. We describe how acknowledging these hurdles and identifying solutions enabled us to progress with development. We believe that our experience can assist other applications of developing quantitative decision support for resource allocation.

Funder

National Socio-Environmental Synthesis Center

Centre of Excellence for Environmental Decisions, Australian Research Council

Publisher

Frontiers Media SA

Subject

Management of Technology and Innovation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3