Coexistence patterns of sympatric giant pandas (Ailuropoda melanoleuca) and Asiatic black bears (Ursus thibetanus) in Changqing National Nature Reserve, China

Author:

Li Jia,Li Diqiang,Dong Wei

Abstract

Similar species may co-occur in sympatry because of the partitioning of habitat use and resources at different spatial and temporal scales. Understanding coexistence patterns of species may contribute to further uncovering the underlying coexistence mechanisms, and ultimately benefit the conservation of threatened species. In this study, camera trapping was used to investigate spatial and temporal activity patterns of sympatric giant pandas (Ailuropoda melanoleuca) and Asiatic black bears (Ursus thibetanus) in Changqing National Nature Reserve in Qinling Mountains, China. Our study obtained 281 independent detections of giant pandas and 185 of Asiatic black bears during 93,606 camera-trap days from April 2014 to October 2017. We performed occupancy modeling and temporal overlap analyses to examine the spatial-temporal relationships between pandas and bears, and results showed that: (1) giant pandas had higher detection probabilities than Asiatic black bears, while having lower occupancy probabilities; (2) Elevation positively predicted giant panda and negatively predicted Asiatic black bear occupancy, understory vegetation type negatively predicted giant panda occupancy, and distance to nearest settlement positively predicted Asiatic black bear occupancy; (3) giant pandas were more active in spring and winter, while Asiatic black bears were more active in summer, and the two species had low spatial overlap with one another throughout the year; (4) both giant pandas and Asiatic black bears showed mainly diurnal activity patterns, and had high temporal overlap with one another in spring and moderate temporal overlap with one another in autumn. Our results provide detailed information of the spatial and temporal ecology of sympatric giant pandas and Asiatic black bears in the Qinling Mountains of China, which could act as a guide to construct conservation priorities as well as design efficient management programs.

Publisher

Frontiers Media SA

Subject

Management of Technology and Innovation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3