Experimental study of distribution and quantitative characterization of discontinuous oil phase based on micro-CT

Author:

Yang Jiangshan,Shan Gaojun,Wang Zhiqiang,Zhang Qi,Yang Yongfei,Ma Wenjie

Abstract

When a sandstone reservoir enters the ultra-high water cut stage, the oil phase changes from continuous to discontinuous, which results in difficulties in the further development and utilization of the reservoir. It is important to clarify the flow law and distribution state of discontinuous oil phases to guide the remaining oil production. This study selected samples from sandstone reservoirs, accurately obtained oil and water phase information from digital core, and constructed matrix based on three-dimensional CT scanning to study the law of discontinuous oil phase distribution. We used digital cores to construct pore network models and calculate the pore radius, throat radius, pore-throat ratio, coordination number, and tortuosity to study the influence of pore structure on discontinuous oil phase flow law. A micro-displacement experiment consisting of two phases of simulated reservoir and development was designed. To improve the accuracy of the experiment, the related pressure was controlled to form bound water in the simulated reservoir formation stage. In the simulated reservoir development phase, in situ scanning of cores at different displacement stages was performed to obtain oil and water distributions at different stages in the same location. The number of oil droplets, 3D shape factor, Euler number, and saturation coefficient of the oil phase were calculated, and the micro-remaining oil clumps were quantitatively analyzed. According to the morphology and distribution characteristics, the remaining oil of the discontinuous phase was divided into the types of the throat, film, droplet, island, and corner. The results showed that the sample with a small pore-throat ratio, large coordination number, and small tortuosity was more likely to form dominant channels; moreover, the remaining oil was more concentrated in this state. In the remaining oil of the discontinuous phase, the number of droplets was the largest and had an obvious displacement effect. The island number was small because the selected samples had good connectivity and it is difficult to form large oil droplets in a single pore. In the ultra-high water cut stage, the throat number increased slowly, which was related to the formation of dominant channels. The corner and the film were difficult to displace; thus, their numbers increased steadily. The quantitative characterization of the discontinuous oil phase is helpful for further study of remaining oil at the pore scale.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3