Anisotropy of Magnetic Susceptibility Reveals Late Miocene Tectonic Activity in the Western Qaidam Basin

Author:

Zhang Weilin,Li Bingshuai,Yan Maodu

Abstract

The western Qaidam Basin on the northeastern Tibetan Plateau located at the intersection between the Altyn Tagh Fault and the Kunlun Fault/Qimen Tagh Fault holds significant potential to reveal the tectonic process of these two faults as well as the evolution of the Qaidam Basin. In this paper, we conducted detailed anisotropy of magnetic susceptibility (AMS) records from Late Cenozoic sediments at the Qigequan section in the western Qaidam Basin to shed new light on the tectonic processes in this region. Based on the distribution of three principal axes of magnetic fabrics as well as magnetic fabric parameters, the AMS records can be divided into three parts. The lower part (∼6.9–4.6 Ma), mainly made of fine-grained mudstone and siltstone, exhibits three well-grouped principal axes with a NE-SW elongated Kmin axis as the embryonic tectonic magnetic fabric, suggesting constant NE-SW compressional strain. The middle part (∼4.6–3.0 Ma), characterized by mudstone, siltstone and sandstone, shows three less grouped principal axes and suggests a relatively weak and stable tectonic environment. The three principal axes of the upper part (∼2.4–0.4 Ma) is composed of sandstone and conglomerate of the Qigequan Formation, similar to the middle part, which was primarily attributed to the coarse lithology and not sensitive to tectonics since ∼2.6 Ma. The NE-SW compressional strain in the western Qaidam Basin is consistent with that in the northeastern basin, both of which are parallel to the upper crust movements revealed by the GPS, suggesting the dominant NE-SW compressional strain in the western and northern basins in the late Cenozoic. The decreasing magnitude of tectonic activities during ∼6.9–4.6 Ma indicates that the major geological units released most of the compressional strain in the western Qaidam Basin during tectonic activity that initiated in the early-late Miocene.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3