A fast least-squares reverse time migration method using cycle-consistent generative adversarial network

Author:

Huang Yunbo,Huang Jianping,Ma Yangyang

Abstract

With high imaging accuracy, high signal-to-noise ratio, and good amplitude balance, least-squares reverse time migration (LSRTM) is an imaging algorithm suitable for deep high-precision oil and gas exploration. However, the computational costs limit its large-scale industrial application. The difference between traditional reverse time migration (RTM) and LSRTM is whether to eliminate the effect of the Hessian operator or not while solving Hessian matrix explicitly or eliminating the effect of the Hessian matrix implicitly has a very high requirement on computation or storage capacity. We simulate the inverse Hessian by training a cycle-consistent generative adversarial network (cycleGAN) to construct a mapping relationship between the RTM results and the true reflectivity models. The trained network is directly applied to the RTM imaging results, which improves the imaging quality while significantly reducing the calculation time. We select three velocity models and two velocity models respectively to generate the training and validation data sets, where the validation data is not involved in the training process. The prediction results on the validation data sets show that the trained network significantly improves the imaging quality with almost no additional in computational effort. Finally, we apply the network trained with only synthetics to the field data. The predicted results confirm the effectiveness and good generalization of the proposed method.

Funder

National Key Research and Development Program of China

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference43 articles.

1. True-amplitude beam migration: 74st annual international meeting;Albertin,2004

2. Reverse time migration;Baysal;Geophysics,1983

3. One-sided unsupervised domain mapping;Benaim;Adv. Neural Inf. Process. Syst.,2017

4. Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform;Beylkin;J. Math. Phys.,1985

5. Elastic reverse‐time migration;Chang;Geophysics,1987

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3