The application of evidence-entropy weight gray incidence theory on the risk assessment of rockburst intensity in the Daxiangling tunnel

Author:

Zhang Xue-Jun,Gu Xin-Bao

Abstract

The risk assessment of rockburst intensity is significant for tunnel construction safety. First, the depth of the rockburst (X1), the uniaxial compressive strength of the rocks (X2), the brittleness coefficient of the rocks (X3), the stress coefficients of the rocks (X4), and the elastic energy index (X5) are adopted as the evidence body, and their essential certainty and reliability is determined using the entropy-gray correlation theory. Second, the synthetic certainty reliability of other samples is calculated based on the evidence theory. Relatively to the traditional gray extension model, it can improve the predictive accuracy and determine the certainty and reliability of different evidence bodies. The difference of importance between other evidence bodies can be reflected; and an interval scale can be taken into consideration in the evaluation process, so the proposed theory can reasonably predict the grade criterion which is interval form. Conclusion demonstrated that the suggested approach is entirely consistent with the actual investigation. The proposed model not only considers the unreliability or reliability of the problem but also solves some degrees of uncertainty and ambiguity of the datum; it enhances the predictive efficiency and provides a new way and thought for future risk assessment of rockburst intensity.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference32 articles.

1. Application of attribute synthetic evaluation system in prediction of possibility and classification of rock burst;Chang-ping;Eng. Mech.,2008

2. A model for prediction of rock burst by artificial neural network;Chen;Chin. J. Geotechnical Eng.,2002

3. The enhanced extended finite element method for the propagation of complex branched cracks;Chen;Eng. Analysis Bound. Elem.,2019

4. Prediction of tunnel rockburst based on AHP-FUZZY method;Chen;J. China Coal Soc.,2008

5. Application of long-range cross-hole acoustic wave detection Technology in geotechnical engineering detection: case studies of tunnel-surrounding rock, foundation and subgrade;Dong;Sustainability,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3