CFM: a convolutional neural network for first-motion polarity classification of seismic records in volcanic and tectonic areas

Author:

Messuti Giovanni,Scarpetta Silvia,Amoroso Ortensia,Napolitano Ferdinando,Falanga Mariarosaria,Capuano Paolo

Abstract

First-motion polarity determination is essential for deriving volcanic and tectonic earthquakes’ focal mechanisms, which provide crucial information about fault structures and stress fields. Manual procedures for polarity determination are time-consuming and prone to human error, leading to inaccurate results. Automated algorithms can overcome these limitations, but accurately identifying first-motion polarity is challenging. In this study, we present the Convolutional First Motion (CFM) neural network, a label-noise robust strategy based on a Convolutional Neural Network, to automatically identify first-motion polarities of seismic records. CFM is trained on a large dataset of more than 140,000 waveforms and achieves a high accuracy of 97.4% and 96.3% on two independent test sets. We also demonstrate CFM’s ability to correct mislabeled waveforms in 92% of cases, even when they belong to the training set. Our findings highlight the effectiveness of deep learning approaches for first-motion polarity determination and suggest the potential for combining CFM with other deep learning techniques in volcano seismology.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference59 articles.

1. The implicit regularization of stochastic gradient flow for least squares;Ali,2020

2. Full moment tensors for small events (M w< 3) at Uturuncu volcano, Bolivia;Alvizuri;Geophys. J. Int.,2016

3. Earthquake focal mechanisms as a stress meter of active volcanoes;Aoki;Geophys. Res. Lett.,2022

4. PolarCAP–A deep learning approach for first motion polarity classification of earthquake waveforms;Chakraborty;Artif. Intell. Geosciences,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3