Assessing predictability of post-monsoon crop residue fires in Northwestern India

Author:

Jethva Hiren

Abstract

Over the past five decades, the Green Revolution in India has been a great success resulting in significantly increased crop yields and food grain productivity. Northwestern India, also known as the country’s breadbasket, alone produces two-thirds of the wheat and rice grains under the crop rotation system. Our previous study has shown that the post-monsoon rice crop production in the Punjab state of India has increased by 25%. The crop yields produce proportionate amounts of residue, a large part of which is subjected to burn in the open fields due to the near-absence of a wide-scale, affordable, and environmentally sustainable removal mechanism. A significant increase in crop productivity coincides with a 60% increase in post-harvest crop residue burning during 2002–2016. The study also demonstrated a robust relationship between satellite measurements of vegetation index—a proxy for crop amounts, and post-harvest fires—a precursor of air pollution events, for predicting seasonal agricultural burning. In this report, the efficacy of the proposed prediction model is assessed by comparing the forecasted seasonal fire activity against the actual detection of active fires for the post-monsoon burning seasons of 2017–2021. A simple linear regression model allows efficient prediction of seasonal fire activity within an error of up to 10%. In addition to forecasting seasonal fire activity, the linear regression model offers a practical tool to track and evaluate the effectiveness of the residue management system intended to reduce fire activities and resulting air pollution.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference17 articles.

1. Agriculture crop residue burning in the indo-gangetic plains: A study using irs-P6 AWiFS satellite data;Badarinath;Curr. Sci.,2006

2. Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi, India;Cusworth;Environ. Res. Lett.,2018

3. Long-term yield trends in the rice-wheat cropping system;Duxbury;J. Crop Prod.,2001

4. An enhanced contextual fire detection algorithm for MODIS;Giglio;Rem. Sens. Environ.,2003

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3