Building archean cratonic roots

Author:

Jain Charitra,Rozel Antoine B.,van Hunen Jeroen,Chin Emily J.,Manjón-Cabeza Córdoba Antonio

Abstract

Geophysical, geochemical, and geological investigations have attributed the stable behaviour of Earth’s continents to the presence of their Archean cratonic roots. These roots are likely composed of melt-depleted, low density residual peridotite with high magnesium number (Mg#), while devolatilisation from the upper mantle during magmatic events might have made these roots more viscous and intrinsically stronger than the convecting mantle. Several conceptual dynamic and petrological models of craton formation have been proposed. Dynamic models invoke far-field shortening or mantle melting events, e.g., by mantle plumes, to create melt-depleted and thick cratons. Compositional buoyancy and rheological modifications have also been invoked to create long-lived stable cratonic lithosphere. However, these conceptual models have not been tested in a dynamically self-consistent model. In this study, we present global thermochemical models of craton formation with coupled core-mantle-crust evolution driven entirely by gravitational forces. Our results with melting and crustal production (both oceanic and continental) show that formation of cratonic roots can occur through naturally occurring lateral compression and thickening of the lithosphere in a self-consistent manner, without the need to invoke far-field tectonic forces. Plume impingements, and gravitational sliding creates thrusting of lithosphere to form thick, stable, and strong lithosphere that has a strong resemblance to the Archean cratons that we can still observe today at the Earth’s surface. These models also suggest the recycling of denser eclogitic crust by delamination and dripping processes. Within our computed parameter space, a variety of tectonic regimes are observed which also transition with time. Based on these results, we propose that a ridge-only regime or a sluggish-lid regime might have been active on Earth during the Archean Eon as they offer favourable dynamics and conditions for craton formation.

Funder

Research Councils UK

European Research Council

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3