Multi-frequency wavefield modeling of acoustic VTI wave equation using physics informed neural networks

Author:

Sandhu Ali Imran,Waheed Umair bin,Song Chao,Dorn Oliver,Soupios Pantelis

Abstract

Incorporating anisotropy is crucial for accurately modeling seismic wave propagation. However, numerical solutions are susceptible to dispersion artifacts, and they often require considerable computational resources. Moreover, their accuracy is dependent on the size of discretization, which is a function of the operating frequency. Physics informed neural networks (PINNs) have demonstrated the potential to tackle long-standing challenges in seismic modeling and inversion, addressing the associated computational bottleneck and numerical dispersion artifacts. Despite progress, PINNs exhibit spectral bias, resulting in a stronger capability to learn low-frequency features over high-frequency ones. This paper proposes the use of a simple fully-connected PINN model, and evaluates its potential to interpolate and extrapolate scattered wavefields that correspond to the acoustic VTI wave equation across multiple frequencies. The issue of spectral bias is tackled by incorporating the Kronecker neural network architecture with composite activation function formed using the inverse tangent (atan), exponential linear unit (elu), locally adaptive sine (l-sin), and locally adaptive cosine (l-cos) activation functions. This allows the construction of an effectively wider neural network with a minimal increase in the number of trainable parameters. The proposed scheme keeps the network size fixed for multiple frequencies and does not require repeated training at each frequency. Numerical results demonstrate the efficacy of the proposed approach in fast and accurate, anisotropic multi-frequency wavefield modeling.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. Wavefield solutions from machine learned functions constrained by the helmholtz equation;Alkhalifah;Artif. Intell. Geosciences

2. Acoustic approximations for processing in transversely isotropic media;Alkhalifah;Geophysics,1998

3. An acoustic wave equation for anisotropic media;Alkhalifah;Geophysics,2000

4. High-dimensional wavefield solutions based on neural network functions;Alkhalifah

5. Automatic differentiation in machine learning: A survey;Baydin;J. Marchine Learn. Res.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3