Glaciers Control the Hydrogeochemistry of Proglacial Streams During Late Summer in the Wind River Range, Wyoming, United States

Author:

Barkdull Natalie S.,Carling Gregory T.,Fernandez Diego P.,Nelson Stephen T.,Bickmore Barry R.,Tingey David G.,Checketts Hannah N.,Packer Brian N.,Hale Colin A.

Abstract

Glaciers alter the geochemistry of sensitive alpine streams by exposing freshly weathered bedrock and releasing atmospherically deposited trace metals from melting ice. Changes in the timing and quantity of glacial melt also affect discharge and temperature of alpine streams. To investigate the effects of glacier meltwater on the geochemistry and hydrology of proglacial streams in the western US, we sampled supraglacial meltwaters and proglacial streams in the Dinwoody Creek watershed in the Wind River Range, Wyoming during a one-week period in 2015. The upper watershed contains Gannett Glacier ( ∼ 5 km2) and Dinwoody Glacier ( ∼ 4 km2) at elevations between 3,300–4,000 m asl. Samples were collected during late summer (27 August–4 September) when the contributions of glacier meltwater were highest. Supraglacial meltwater was enriched in a suite of trace metals (Cd, Co, Cu, Hg, Mn, Pb, Zn) relative to proglacial streams, suggesting an atmospheric source of metals to the glaciers. Concentrations of major ions and the remaining 30+ analyzed trace elements were enriched in proglacial streams relative to supraglacial meltwater, reflecting weathering of granite and gneiss bedrock. To evaluate the diurnal effects of glacier meltwater inputs, we deployed loggers to monitor water levels, temperature, and specific conductance at 15 min intervals over a one-week period and collected hourly water samples from Dinwoody Creek for a 24 h period. The influx of glacial meltwater during the daytime diluted major ion and rare earth element concentrations and caused increased concentrations for a subset of trace metals. Stable water isotopes (δD and δ18O) in Dinwoody Creek were more depleted during peak flow relative to baseflow due to contributions from isotopically depleted meltwater. The combination of multiple hydrologic tracers (solute concentrations, high frequency logger data, water isotopes) shows strong potential to improve estimates of glacier meltwater contributions to proglacial streams. Changes in water chemistry and discharge need to be monitored as glaciers recede across the Wind River Range and other midlatitude mountain ranges for mitigating negative impacts on alpine ecosystems and downstream water resources.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3