The Environment at Lake El’gygytgyn Area (Northeastern Russian Arctic) Prior to and After the Meteorite Impact at 3.58 Ma

Author:

Andreev Andrei,Dietze Elisabeth,Glushkova Olga,Smirnov Vladimir,Wennrich Volker,Melles Martin

Abstract

Upper Pliocene sediments from a number of fluvial outcrops in central Chukotka, northeastern Russian Arctic, along the Enmyvaam, Mechekrynnetveem, and Chanuvenvaam Rivers, have been newly studied for pollen, non-pollen-palynomorphs and, for the first time for Pliocene sediments in Eurasia, charcoals. The sediments have survived the El’gygytgyn meteorite impact event at ∼3.58 Ma. The stratigraphy of the studied outcrops suggests that the lowermost sediments were accumulated shortly before the impact event, between ∼3.60 and 3.58 Ma. At that time, coniferous forests with spruces, pines, firs, birches, larches, and alders dominated in the area. Some relatively thermophilic broad-leaved taxa (Corylus, Carpinus, Ulmus, and Myrica) might also have grown in local forests. Summer temperatures were at least 10°C warmer than today. Charcoal concentrations and composition suggest the presence of high intensity fires. Periods of rather wet climate and soil conditions are marked by common shrubby and boggy habitats with ericaceous plants and Sphagnum, and are associated with less, and probably low-intensity surface fires with less charcoal. The impact event caused widespread fires reflected by up to 4 times higher charcoal concentrations in the sediments. The sediments found above the so-called “chaotic horizon” (sediments accumulated synchronously or very shortly after the impact event) contain late Pliocene pollen assemblages comparable to those in Lake El’gygytgyn, reflecting that pine-spruce forests with some firs, birches, larches, and alder dominated in the study area. Some thermophilic taxa might also still have grown in the area. However, the age control for the sediments above the so-called chaotic horizon is poor. The uppermost sediments from the studied sections can be attributed with certainty to the Late Pleistocene and Holocene according to their stratigraphic positions and pollen assemblages. The combined pollen and charcoal analysis allowed correlating hardly datable fluvial sediments and points to varying fire regimes in warmer-than-present climates, when forest extended further north compared to today.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Charred particles and other paleofire proxies;Reference Module in Earth Systems and Environmental Sciences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3