Effects of Provenance, Transport Processes and Chemical Weathering on Heavy Mineral Composition: A Case Study From the Songhua River Drainage, NE China

Author:

Wu Peng,Xie Yuanyun,Kang Chunguo,Chi Yunping,Sun Lei,Wei Zhenyu

Abstract

Understanding the heavy mineral composition of the Songhua River basin in NE China and the influencing factors (e.g., provenance, transport processes and chemical weathering) is crucial for the study of both the source-to-sink processes and the drainage evolution in the region. To this end, a total of 43 samples were collected from the river bars and terraces of the main and tributary streams of the Songhua River, and analyzed for heavy minerals in different grain-size fractions based on the novel automated TESCAN Integrated Mineral Analyzer (TIMA) combined with standard optical method. The results show that the tributaries originating from different mountains have significantly different heavy mineral composition. The locally occurring basic source signal in the tributaries of the Nenjiang River (the largest tributary of the Songhua River) are not well preserved in the Nenjiang River and the Songhua River trunk streams, indicating that the control of sources on heavy mineral composition is influenced by fluvial processes. Additionally, significant differences in the heavy mineral composition of different reaches of the same river also indicate that the heavy mineral composition is significantly influenced by fluvial processes. Influenced by hydraulic sorting during river processes, heavy minerals are enriched in different size fractions with the low-density minerals systematically overestimated in a wide window, suggesting an advantage of multi-window policy over wide window policy. In contrast to modern river sediments, the original heavy mineral composition of river terrace sediments has been severely damaged due to chemical weathering, so the degree of chemical weathering of terrace sediments needs to be evaluated first in provenance tracing and paleo-drainage evolution studies. TIMA has an irreplaceable role in identifying mineral species, additional images and elemental composition, and however, it performs poorly in identifying polycrystalline minerals, thus the combination with traditional methods can obtain more complete and accurate information.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3