Response of Drainage Pattern and Basin Evolution to Tectonic and Climatic Changes Along the Dinarides-Hellenides Orogen

Author:

Gemignani L.,Mittelbach B. V.,Simon D.,Rohrmann A.,Grund M. U.,Bernhardt A.,Hippe K.,Giese J.,Handy M. R.

Abstract

The junction of the Dinaric and Hellenic mountain belts hosts a trans-orogenic normal fault system (Shkoder-Peja Normal Fault, SPNF) that has accommodated oroclinal bending, as well as focused basin formation and drainage of the Drin River catchment. Analysis of fluvial morphology of this catchment reveals higher values of river slope indices (ksn) and χ (Chi) between the normal faults of the SPNF and the Drin drainage divide. The drainage divide is predicted to be migrating away from the SPNF, except at the NE end of the SPNF system. Two basins analysed in the hangingwall of the SPNF, the Western Kosovo Basin (WKB) and Tropoja Basin (TB), contain late Pliocene-to-Holocene sedimentary rocks deposited well after the main fault activity and immediately after the Last Glacial Maximum (LGM). These layers document an early Pleistocene transition from lacustrine to fluvial conditions that reflects a sudden change from internal to external drainage of paleo-lakes. In the TB, these layers were incised to form three generations of river terraces, interpreted to reflect episodic downstream incision during re-organisation of the paleo-Drin River drainage system. 36Cl-cosmogenic-nuclide depth-profile ages of the two youngest terraces (∼12, ∼8 ka) correlate with periods of wetter climate and increased sediment transport in post-LGM time. The incision rate (∼12 mm/yr) is significantly greater than reported in central and southern Albania. Thus, glacial/interglacial climatic variability, hinterland erosion and base-level changes appear to have regulated basin filling and excavation cycles when the rivers draining the WKB and TB became part of the river network emptying into the Adriatic Sea. These dramatic morphological changes occurred long after normal faulting and clockwise rotation on the SPNF initiated in late Oligocene-Miocene time. Faulting provided a structural and erosional template upon which climate-induced erosion in Holocene time effected reorganisation of the regional drainage pattern, including the formation and partial demise of lakes and basins. The arc of the main drainage divide around the SPNF deviates from the general coincidence of this divide with the NW-SE trend of the Dinaric-Hellenic mountain chain. This arc encompasses the morphological imprint left by roll-back subduction of the Adriatic slab beneath the northwestern Hellenides.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference100 articles.

1. Quaternary Subsidence Zones in Albania: Some Case Studies;Aliaj;Bull. Eng. Geology. Environ.,2001

2. The Albanian Orogen: Convergence Zone between Eurasia and the Adria Microplate;Aliaj,2006

3. The 8k Event: Cause and Consequences of a Major Holocene Abrupt Climate Change;Alley;Quat. Sci. Rev.,2005

4. Modeling Fluvial Incision and Transient Landscape Evolution: Influence of Dynamic Channel Adjustment;Attal;J. Geophys. Res.,2008

5. Modeling of Knickpoint Retreat on the Roan Plateau, Western Colorado;Berlin;J. Geophys. Res. Earth Surf.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3