Geochemical Characteristics and Origin of Formation Water From the Upper Triassic Xujiahe Tight Sandstone in the Xiaoquan-Fenggu Structural Belt, Western Sichuan Depression, China

Author:

Wang Peng,Yin Shuai,Shen Zhongmin,Zhu Tong,Zhang Wenkai

Abstract

Formation water represents an important driving force and carrier for the migration and accumulation of oil and gas; thus, research on its origin is a hot spot in petroleum geology. The Upper Triassic Xujiahe Formation in the Xiaoquan-Fenggu Structural Belt in the western Sichuan Depression, China, has developed thick tight sandstone gas reservoirs. However, previous studies have provided different conclusions on the origin of the formation water in the Xujiahe tight sandstone reservoir. In this paper, the origin of the formation water in the Xujiahe Formation was determined based on the latest major and minor elemental concentration data, hydrogen and oxygen isotopes data of formation water, and carbon and oxygen isotope data of carbonate cements. The results show that the salinity of the formation water of the Xujiahe Formation in the study area is generally greater than 50 g/L. The water type is mainly the CaCl2 type, although a small proportion of NaHCO3 type water with high salinity is observed, which is related to hydrocarbon expulsion by overpressure. Moreover, the formation water in the sandstone of the Xujiahe Formation is obviously rich in Br, which is related to membrane infiltration, overpressured hydrocarbon expulsion of shale and diagenesis of organic matter. The composition of Cl and Na+ ions in the formation water in the Xujiahe tight sandstone reservoir is consistent with the seawater evaporation curve, which deviates significantly from the freshwater evaporation curve. The hydrogen and oxygen isotopes of condensate water in the Xujiahe Formation tight sandstone are similar to those of atmospheric precipitation water, while the hydrogen and oxygen isotopes of the formation water in the Xujiahe Formation show that it is of seawater origin. Therefore, to use hydrogen and oxygen isotopes to determine the origin of formation water, condensate water must be accurately differentiated from formation water. Otherwise, if the condensate water is misjudged as formation water, then incorrect conclusions will be drawn, e.g., that the formation water of the Xujiahe Formation originated from fresh water. Affected by organic carbon, the carbon isotope Z value of the carbonate cements in the Xujiahe Formation is low (mainly distributed between 110 and 130). A Z value of less than 120 does not indicate that the ancient water bodies formed by cements were fresh water or mixed water bodies. However, Z values greater than 120 correspond to a formation temperature lower than 80 C, which indicates that carbonate cement was not affected by organic carbon; thus, the Z value can reflect the origin of ancient water bodies. The results of this study indicate that the formation water of the Xujiahe tight sandstone in the study area is of seawater origin. The determination of the origin of the formation water and seawater of the Xujiahe Formation provides strong evidence for the determination of the marine sedimentary environment of the Xujiahe Formation in the study area, and can provide scientific guidance for the search for high-quality reservoirs.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3