Analysis of the Influencing Factors on Electrical Properties and Evaluation of Gas Saturation in Marine Shales: A Case Study of the Wufeng-Longmaxi Formation in Sichuan Basin

Author:

Sun Fujing,Sun Jianmeng,Zeng Xin,Yuan Weiguo,Zhang Jinyan,Yan Wei,Yan Weichao

Abstract

Accurate gas saturation calculations are critical to evaluating the production of marine shale gas reservoirs. As a high-resolution exploration method, geophysical resistivity well-logging technology has been widely applied in almost all types of oil/gas reservoirs to evaluate formation fluid saturation. Although the calculated saturations are accurate for conventional reservoirs, it is a challenging task to acquire the gas saturation of shale gas reservoirs due to the presence of complex rock compositions and fluid types. It is necessary to analyze different influencing factors on electrical properties to establish a more applicable gas saturation model for marine shales. In this work, we make full use of geological data, well logging data, and rock experiment data to analyze the influencing factors of electrical properties in the Wufeng-Longmaxi Formation in the Sichuan Basin, China. Six conductive factors are studied, including stratigraphic structures, clay minerals, pyrite, organic matter, pore structures, and formation fluids. Then, a shale conductivity model is developed, in which high- and low-resistivity layers are connected in parallel. Based on the conductivity model, a new method for influencing factors of stepwise stripping conductivity is proposed to calculate shale gas saturation. Finally, by interpreting the well logging data of two shale gas wells, we compared the saturation calculation results of different methods to demonstrate the accuracy of the new method. The results show that thin, low-resistivity layers, clay minerals, pyrite and overmature carbonized organic matter reduce the resistivity of shale and weaken the contribution of fluids to the measured shale resistivity. Moreover, the calculation accuracy of this new method is better than that of Archie’s equation, Simandoux’s equation, and the neutron-density porosity overlay method. The findings of this paper will help gain insight into the mechanism of resistivity responses for marine shale reservoirs and improve the accuracy of the estimated gas saturation.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3