Binary structure constrained gravity inversion based on seismic first arrival travel time data

Author:

Deng Xinhui,Zhang Rongzhe,Zhang Jiarong

Abstract

Gravity exploration method is one of the important methods for deep mineral resource exploration, but gravity data inversion has limited resolution ability in the vertical direction. In order to improve the vertical resolution of gravity data inversion, we propose a binary structure constrained gravity inversion method based on seismic first arrival travel time data. This method effectively reconstructs a density model with high vertical resolution by transferring the structural information of a high-resolution velocity model reconstructed by seismic data inversion to gravity data inversion through the binary structure constrained technique. This strategy eliminates the need to integrate both gravity and seismic methods into a single inversion framework, avoiding both the difference in convergence speeds between the two methods, as well as getting rid of the complexity associated with calculating structural coupling terms. Theoretical simulations show that the fuzzy c-means cluster analysis technique can accurately extract the target region of the velocity model reconstructed by seismic data inversion. Under the constraint of seismic structural information, the resolution of reconstructed density model is much higher than that of separate gravity data inversion, which proves that high resolution seismic information can improve the vertical resolution of gravity data inversion. Compared with the traditional cross-gradient joint inversion, the binary structure constrained gravity inversion method can further improve the resolution of the density model, especially in the reconstruction of the anomaly interface, which verifies that the method has certain effectiveness.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3