Advances and Accuracy Assessment of Ocean Tide Models in the Antarctic Ocean

Author:

Sun Weikang,Zhou Xinghua,Zhou Dongxu,Sun Yanfei

Abstract

Ocean tides in polar regions play an important role in the study of sea ice dynamics and floating ice shelves. The accuracy of existing ocean tide models in shallow waters and polar seas is much lower than that in open deep oceans. This study summarized the advances of state-of-the-art global tide models in the Antarctic Ocean, the construction of tide models around Circum-Antarctica, and five typical regions: Antarctic Peninsula, Ross Sea, Filchner–Ronne Ice Shelf (FRIS), Weddell Sea, and Amery Ice Shelf (AIS). The accuracy of FES 2014, TPXO9, EOT20, CATS 2008, and regional tide models in the Antarctic Ocean and typical areas was evaluated using tidal records and satellite altimetry data. EOT20 and ANTPEN04.01 models have higher accuracy in the Antarctic Peninsula, and the root sum square (RSS) values are 8.29 and 7.46 cm, respectively. TPXO9 has the highest accuracy in the Weddell Sea and FRIS and AIS and RSS values are 18.33 and 12.77 cm, respectively. TPXO9 and RIS_Optimal models have higher accuracy in the Ross Sea and Ross Ice Shelf (RIS), RSS values are 5.62 and 6.21 cm, respectively. The accuracy of FES 2014, TPXO9, CATS 2008, and the regional tide model in the Drake Passage, Kerguelen Islands, and Adelie–Mertz was evaluated using satellite altimetry data. The RSS values are less than 4 cm. By using the altimetry data at Sentinel-3A single-satellite crossovers in terms of the STD of the SLA, the comparison of the STDs show that FES2014 is the best.

Funder

National Natural Science Foundation of China-Shandong Joint Fund

National Natural Science Foundation of China-China Academy of General Technology Joint Fund for Basic Research

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference38 articles.

1. Multi-satellite Ocean Tide Modelling—The K1 Constituent;Andersen;Prog. Oceanogr.,1997

2. FES 2014, a New Tidal Model—Validation Results and Perspectives for Improvements;Carrère,2016

3. FES2012: A New Global Tidal Model Taking Advantage of Nearly 20 Years of Altimetry;Carrère,2012

4. Multimission Empirical Ocean Tide Modeling for Shallow Waters and Polar Seas;Cheng;J. Geophys. Res.,2011

5. Sea Surface Height Variability in Drake Passage;Donohue;J. Atmos. Ocean. Technol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3