Heat and moisture transport characteristics in permafrost embankment under seasonal rainfall

Author:

Wang Zhanxu,Wang Laifa,Wang Xinyan,Ming Feng

Abstract

The Tibetan Plateau has exhibited a discernible trend towards increased precipitation over the past 50 years. However, previous research predominantly focused on thermal stability of permafrost without the consideration of water flux boundary conditions, and therefore ignored the dynamics of water migration and its impacts on the embankment stability. To bridge this gap, a novel water-heat transfer model incorporating rainfall and water migration was developed and subsequently validated using monitored data. Comparative analyses were then conducted across three distinct rainfall intensities to investigate the variations in the moisture and temperature of superficial soil. Results indicate rainfall events exert a notable cooling effect during warm seasons but have little influence on cooling during cold seasons. By increasing the latent heat of evaporation, sensible heat and reducing the soil heat flux, rainfall results in embankment cooling, and the cooling effect correlates positively with rainfall intensity. Disregarding the water flux boundary conditions will overestimate the embankment temperature and underestimate the variation of water content, especially at the superficial soil. Rainfall results in a decline in water vapor flux and an increase in liquid water flux, which facilitates rapid downward transport and accumulation of liquid water. Despite the increased convective heat transfer of liquid water, the decrease in heat conduction, latent heat of evaporation and convective heat transfer of water vapor in the embankment is more pronounced. Rainfall changes the stability of permafrost embankment mainly by adjusting the energy distribution, which delays temperature increases in the underlying permafrost. When predicting the stability of permafrost, it is recommended to incorporate the water flux boundary conditions.

Publisher

Frontiers Media SA

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3