Author:
Chen Lei,Jiang Zhenxue,Jiang Shu,Guo Song,Tan Jingqiang
Abstract
The presence and content of water will certainly affect the gas adsorption capacity of shale and the evaluation of shale gas content. In order to reasonably evaluate the gas adsorption capacity of shale under actual reservoir conditions, the effect of water on methane adsorption capacity needs to be investigated. Taking the Da’anzhai Member of the Lower Jurassic Ziliujing Formation in the northeastern Sichuan Basin, China as an example, this study attempts to reveal the effect of pre-adsorbed water on methane adsorption capacity in shale-gas systems by conducting methane adsorption experiments in two sequences, firstly at different temperatures under dry condition and secondly at different relative humidity levels under the same temperature. The results show that temperature and relative humidity (i.e., water saturation) are the main factors affecting the methane adsorption capacity of shale for a single sample. The key findings of this study include: 1) Methane adsorption capacity of shale first increases then decreases with depth, reaching a peak at about 1,600–2,400 m. 2) Lower relative humidity correlates to greater maximum methane adsorption capacity and greater depth to reach the maximum methane adsorption capacity. 3) 20% increase of relative humidity results in roughly 10% reduction of maximum methane adsorption capacity. As a conclusion, methane adsorption capacity of shale is predominately affected by water saturation, pore type and pore size of shale. This study could provide a theoretical basis for the establishment of a reasonable evaluation method for shale adsorbed gas content.
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献