Classification of lava lakes based on their heat and SO2 emission: Implications for their formation and feeding processes

Author:

Campion Robin,Coppola Diego

Abstract

Lava lakes are a fascinating but somewhat rare form of volcanic activity. Lava lakes are large free surfaces of hot lava that discharge continuously, and almost quietly, heat and volcanic gases into the atmosphere. They are thought to be fed by convection processes that bring hot gas-rich magma to the surface and back downward, after its cooling and outgassing. A lava lake represents a latent threat for the populations living nearby, as it can drain suddenly through fissures and generate dangerously fast lava flows. We present time series of Volcanic Radiative Power (VRP) and SO2 flux measured from satellites (MODIS and OMI, respectively) from several lava lakes on Earth (Erta Ale, Nyiragongo, Kilauea, Nyamuragira, Ambrym, and Villarrica). Based on long-term trends plotted in a simple VRP versus SO2 flux diagram, we propose a new classification of lava lakes in three categories: small lakes, large foam-dominated lakes, and large melt-dominated lakes. Small lakes show a long-term correlation between VRP and SO2 emissions, while large lakes seem to show an anticorrelation between VRP and SO2 emissions. This at-first-glance surprising anticorrelation probably results from the limited heat transport capacity of the gas-rich foam that initially feeds the convection of these lakes. We also show that the formation of three large lava lakes in the last 2 decades at the rift and hotspot volcanoes followed a similar trend of transitioning, in a few months, from foam-dominated to melt-dominated. We deduce that lava lake formation at these volcanoes follows a common sequence of processes that includes the formation of a large shallow magma reservoir and its outgassing through a newly formed pit crater.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference78 articles.

1. A CO2-gas precursor to the March 2015 Villarrica volcano eruption;Aiuppa;Geochem. Geophys. Geosystems,2017

2. Tracking Formation of a lava lake from ground and space: Masaya Volcano (Nicaragua), 2014-2017;Aiuppa;Geosystems,2018

3. Spectroscopic evidence for a lava fountain driven by previously accumulated magmatic gas;Allard;Nature,2005

4. InSAR study on the 2011 eruption at Nyamulagira volcano, D.R.C.: Lava flow emplacement and post-eruption ground deformation;Albino,2013

5. Overview of the precursors and dynamics of the 2012–13 basaltic fissure eruption of Tolbachik Volcano, Kamchatka, Russia;Allard;J. Volcanol. Geotherm. Res.Special issue Vanuatu Volcanoes,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3