Preferred Pore Orientation as a Complement to Anisotropy of Magnetic Susceptibility: A Case Study of Lava Flows From Batur Volcano, Bali, Indonesia

Author:

Desi Wulan Ndari Nuresi Rantri,Suryanata Putu Billy,Bijaksana Satria,Dahrin Darharta,Atarita Fadhli Ramadhana,Pratama Aditya,Hafidz Abd,Fajar Silvia Jannatul

Abstract

Anisotropy of magnetic susceptibility (AMS) analyses have been used widely in many applications that include studying lava flows. In this paper, we introduce an auxiliary parameter, i.e., preferred pore orientation, on the use of AMS for lava flow studies on the basaltic lava samples from Batur Volcano in Bali Indonesia. We also examine the effect of sample position in lava flow outcrop to the relationship between preferred pore orientation and AMS. The samples are subjected to petrographic analyses as well as to magnetic measurements and micro-computed tomography (μCT) imaging. Preferred pore orientations were obtained by quantified the long-axis of the vesicles from the images. The correlation was evaluated by measuring the angle between the maximum susceptibility axes and the preferred pore orientations. All samples show that the maximum susceptibility axes are parallel with the flow direction. Three out of six samples of two lava flows from the same eruption show a positive correlation between AMS and preferred pore orientation, where both parameters point to the northeast direction. A difference of sample position in the outcrop of lava flow was observed as a possible factor that influenced the results for the preferred pore orientations. Samples which were taken from the summit of the lava flow have pore orientation parallel to the lava flow direction. While samples which were taken from the foot slope of the lava flow have pore orientation perpendicular to the lava flow direction. This study provides further evidence that pore orientation might be positively correlated with the AMS.

Funder

Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3