Effect of construction technology on air-lifting pump mining

Author:

Zhao Yan-Lin,Wang Xia-Guang,Tang Chuan-Lin,Hu Dong,Lin Peng,Xia Mei-Li

Abstract

The air-lifting pump has the advantages of low cost, strong reliability, simple structure and convenient maintenance, especially in the fields of deep-sea mining, oilfield mining and mineral mining under complex geological conditions. The construction technology and air intake mode not only play a decisive role in the performance of the air-lifting pump, but also greatly hinder the engineering application of the air-lifting pump. Here, the air-lifting pump is taken as the research object, and the river sand is used as the experimental transport medium. The particle concentration-efficiency model is established based on the mechanical energy conservation theorem. The working performance characteristic parameters of the air-lifting pump under different construction technologies are obtained by a three-axis motion control system. On this basis, the working performance characteristic parameters of the air-lifting pump under different intake modes are obtained by changing the intake mode. The results show that the particle concentration-efficiency model can well describe the efficiency of lifting solid particles by the air-lifting pump. When the sand depth is less than 200 mm, the concentration and efficiency of solid particles transported by the air-lifting pump in the horizontal movement construction are significantly better than those in the fixed position construction. In the same construction technology, the solid particle concentration of the air-lifting pump in uniform intake mode is better than that in non-uniform intake mode, while the transportation efficiency of the air-lifting pump in non-uniform intake mode is better than that in uniform intake mode. The research results of this paper can provide an important theoretical reference value for the air-lifting pump in practical engineering applications.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3