Role of acidic fluids in Earth’s deep lithosphere: Insights from the Neoarchean magmatic roots of the Nilgiri Block, southern India

Author:

Samuel Vinod O.,Santosh M.,Jang Yirang,Kwon Sanghoon

Abstract

Fluids play a major role in facilitating igneous/metamorphic processes in the Earth’s crust and mantle. In this study, we investigate the nature and composition of fluids in Earth’s interior by studying the lower crustal rocks. We compare accessory minerals (e.g., apatite, monazite, allanite, and titanite), their texture, mineral reactions and composition among regionally distributed metamorphosed mafic and felsic rocks representing the roots of Neoarchean arc magmatism from the Nilgiri Block of the Southern Granulite Terrane in India. Regional trends in accessory minerals show the formation of monazite, allanite, and titanite in the felsic rocks. Apatite is depleted in REEs in all the rock types, irrespective of the difference in their whole-rock chemistry. Textural features and mineral reactions show that these accessory minerals were affected by fluids present in the lower crustal conditions. By comparing our results with those from previous experimental results, we further show that acidic CO2-H2O-HCl-HF fluids stable in lower crustal conditions could have resulted in these chemical and textural features. Dielectric constant of water is high (10–35 compared to lower crustal conditions) in high-pressure and low-temperature conditions of subduction zones and the upper mantle. Such conditions would enhance dissociation of HCl (compared to lower crust) and result in acidic fluids during dehydration reactions in subduction zones and in the upper mantle. Our results have important implications in understanding the nature and composition of fluids in Earth’s interior and would be helpful to model the tectonic and deep geochemical processes in both early and modern conditions in planetary interiors.

Funder

National Research Foundation of Korea

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3