An assessment of potential causal links between deglaciation and eruption rates at arc volcanoes

Author:

Conway Chris E.,Pure Leo R.,Ishizuka Osamu

Abstract

One of the fundamental questions that underpins studies of the interactions between the cryosphere and volcanism is: do causal relationships exist between the ice volume on a volcano and its eruption rate? In particular, it is critical to determine whether the decompression of crustal magma systems via deglaciation has resulted in enhanced eruption rates along volcanic arcs in the middle to high latitudes. Evidence for such a feedback mechanism would indicate that ongoing glacier retreat could lead to future increases in eruptive activity. Archives of eruption frequency, size, and style, which can be used to test whether magma generation and eruption dynamics have been affected by local ice volume fluctuations, exist in the preserved eruptive products of Pleistocene-Holocene volcanoes. For this contribution, we have reviewed time-volume-composition trends for 33 volcanoes and volcanic groups in arc settings affected by glaciation, based on published radiometric ages and erupted volumes and/or compositions of edifice-forming products. Of the 33 volcanic systems examined that have geochronological and volumetric data of sufficient resolution to compare to climatic changes since ∼250 ka, increases in apparent eruption rates during post-glacial periods were identified for 4, with unclear trends identified for a further 12. Limitations in the geochronological and eruption volume datasets of the case studies make it difficult to test whether apparent eruption rates are correlated with ice coverage. Major caveats are: 1) the potential for biased preservation and exposure of eruptive materials within certain periods of a volcano’s lifespan; 2) the relative imprecision of geochronological constraints for volcanic products when compared with high-resolution climate proxy records; 3) the reliance on data only from immediately before and after the Last Glacial Termination (∼18 ka), which are rarely compared with trends throughout the Pleistocene to test the reproducibility of eruptive patterns; and 4) the lack of consideration that eruption rates and magma compositions may be influenced by mantle and crustal processes that operate independently of glacial advance/retreat. Addressing these limitations will lead to improvements in the fields of geochronology, paleoclimatology, and eruption forecasting, which could make valuable contributions to the endeavours of mitigating future climate change and volcanic hazards.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3