Data-driven acoustic impedance inversion with reweighted L1 norm sparsity constraint

Author:

Zhao Lian,Lin Kai,Wen Xiaotao,Zhang Yuqiang

Abstract

Acoustic impedance (AI) inversion is widely used in geophysics and reservoir prediction. But the traditional impedance inversion method cannot fully exploit the sparse characteristics of geological attributes. There are problems with multiplicity and low resolution. To solve this problem, a data-driven acoustic impedance inversion method with reweighted L1 norm constraints (DRL1) is proposed. In the inversion process, the reweighted L1 norm and local cross-correlation analysis are introduced to solve the above problems. The reweighted L1 norm is introduced as a sparse constraint (RL1) to replace the traditional inversion method which is constrained by L1 norm. The RL1 method can describe more sparsity information and improve the resolution of inversion. In addition, the quality of seismic data plays a decisive role in seismic inversion. We add local cross-correlation analysis to the inversion process. We evaluated the rationality of each sampling point in the seismic data by introducing cross-correlation analysis, controlling for their contribution to the inversion, making inversion results more stable and accurate. The inversion objective function is solved by the alternating direction multiplier method (ADMM) algorithm and soft threshold shrinkage algorithm. Finally, we validate the effectiveness of the proposed method through model tests and field data. The results show that our proposed method not only provides a more accurate portrayal of the stratigraphy, but also yields more accurate inversion results.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3