Changing Impacts of Tropical Cyclones on East and Southeast Asian Inland Regions in the Past and a Globally Warmed Future Climate

Author:

Chen Jilong,Tam Chi-Yung,Cheung Kevin,Wang Ziqian,Murakami Hiroyuki,Lau Ngar-Cheung,Garner Stephen T.,Xiao Ziniu,Choy Chun-Wing,Wang Peng

Abstract

The impacts of the western North Pacific (WNP) tropical cyclone (TC) on East and Southeast Asian inland regions are analyzed. Here, based on a stringent TC selecting criterion, robust increase of TC-related inland impacts between 1979 and 2016 over East and Southeast Asian regions have been detected. The storms sustained for 2–9 h longer and penetrated 30–190 km further inland, as revealed from different best track datasets. The most significant increase of the TC inland impacts occurred over Hanoi and South China. The physical mechanism that affects TC-related inland impacts is shortly discussed. First, the increasing TC inland impacts just occur in the WNP region, but it is not a global effect. Second, besides the significant WNP warming effects on the enhanced TC landfall intensity and TC inland impacts, it is suggested that the weakening of the upper-level Asian Pacific teleconnection pattern since 1970s may also play an important role, which may reduce the climatic 200 hPa anti-cyclonic wind flows over the Asian region, weakening the wind shear near the Philippine Sea, and may eventually intensify the TC intensity when the TCs across the basin. Moreover, the TC inland impacts in the warming future are projected based on a high-resolution (20 km) global model according to the Representative Concentration Pathway 8.5 scenario. By the end of the 21st century, TC mean landfall intensity will increase by 2 m/s (6%). The stronger storms will sustain 4.9 h (56%) longer and penetrate 92.4 km (50%) farther inland, thereby almost doubling the destructive power delivered to Asian inland regions. More inland locations will therefore be exposed to severe storm–related hazards in the future due to warmer climate. Long-term planning to enhance disaster preparedness and resilience in these regions is called for.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference62 articles.

1. Will Greenhouse Gas-Induced Warming over the Next 50 Years lead to Higher Frequency and Greater Intensity of Hurricanes?;Bengtsson;Tellus A,1996

2. The ERA-Interim Archive;Berrisford;ERA Rep. Ser.,2009

3. Recent Increases in Tropical Cyclone Intensification Rates;Bhatia;Nat. Commun.,2019

4. Slower Decay of Landfalling Hurricanes in a Warmer World - Really;Bosse;Clim. Etc,2020

5. Western North Pacific Tropical Cyclone Intensity and ENSO;Camargo;J. Clim.,2005

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3