An Object-Oriented Approach for the Recursive Numeration and Visualization of the Key Strata of Coal Mines

Author:

Xu Chun,Zhou Keping,Xiong Xin,Lu Yan

Abstract

The exploitation and utilization of coal resources have caused serious ecological and environmental problems that are closely related to the movement and destruction of the overlying strata, especially the activities of the overlying key strata (KS). The existing KS calculation methods are characterized by low efficiency and high costs. This study proposes an object-oriented improved recursive algorithm (OORA) model to achieve efficient calculations for KS. An application program was developed and tested with the KS of the Xiadian coal mine, Shanxi, China. The calculation results were basically consistent with field observations, and the calculation depth was increased by 146.05 m. In addition, five typical KS calculation cases were selected for in-depth testing. The calculation time ranged from 0.175–0.225 s, and the calculation time was shortened by approximately three times compared to that with traditional methods. Therefore, it is feasible to apply the model algorithm for KS calculations, and the model provides benefits such as high efficiency and low costs.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3