Recent and episodic activity of decoupled mud/fluid discharge at Sartori mud volcano in the Calabrian Arc, Mediterranean Sea

Author:

Doll Mechthild,Römer Miriam,Pape Thomas,Kölling Martin,Kaul Norbert,dos Santos Ferreira Christian,Bohrmann Gerhard

Abstract

Mud volcanoes (MVs) are surface structures typically created by episodic discharge of fluids and solids, often associated to onshore and offshore accretionary prisms on convergent plate boundaries. Detailed investigations of ongoing activity and its associated morphological changes, as well as a better understanding of the temporal evolution of these highly dynamic systems, may improve the estimations of material fluxes from MVs drastically. Until today, approximately 70 individual MVs were discovered in the northern Ionian Sea in the Calabrian Arc (Central Mediterranean Sea), but only a few have been analyzed and described in detail. In this study, new evidence for recent recurring eruptive activity of the ∼45 m-high and 1 km-wide Sartori MV situated in the clastic wedge of the Calabrian Arc is presented. High-resolution seafloor mapping as well as sediment temperature, geochemical, and sedimentological data received from two research cruises in 2016 and 2020 are used. Bathymetric and seafloor backscatter data (1 m scale) indicate the presence of two active eruption centers at the flat-topped Sartori MV. Elevated sediment temperature gradients at both eruption centers show that currently heat is transferred to the surface sediments. Pore water analyses indicate that fluids rising below the eruption centers are CH4-rich, Cl-poor, and SO42−-free. Stable C and H isotopic compositions of methane suggest that it originates from a mix of primary microbial, secondary microbial, and/or thermogenic sources. A relatively shallow position of the sulfate–methane interface at both eruption centers also indicates the presence of upward fluid migration in recent times. Pore water modeling suggests that seawater has penetrated the surface sediments to a greater extent within the last few years. In contrast, centimeter-thick layers of hemipelagic sediments overlying mud breccia in sediment cores taken from both eruption centers show that no solid material has been ejected in recent times. Sediment core analyses combined with high-resolution seafloor mapping show an absence of rim-passing mudflows over the past ∼10 ka. It is concluded that Sartori MV is an episodically active MV from which fluids with a comparatively low flux were released into the bottom water in recent times.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3