Projected heatwaves in Xinjiang Uygur autonomous region, China

Author:

Dong Diwen,Tao Hui,Zhang Zengxin,Mondal Sanjit Kumar

Abstract

Introduction: Heatwaves (HWs) are the serious natural disaster that exert great impacts on human health and social economy. Projecting future changes in HWs is crucial for the development of effective adaptation strategies.Method: This study investigates the variations of HWs in Xinjiang for three time periods (near-term, mid-term, and long-term) under four Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) using multi-model ensemble (MME). To enhance confidence in HWs projection, we evaluate the performance of 17 climate models in simulating HWs in terms of interannual variability and spatial patterns using interannual variability skill score (IVS) and distance between indices of simulation and observation (DISO), respectively, and generate MME using the overall performance.Results: Compared to the observed data, the overall performance of MME outperforms most of individual models, although many models effectively capture the characteristics of HWs. Projections indicate that HWs in Xinjiang will become more longer lasting and severe. Specifically, heatwave frequency (HWF) and heatwave duration (HWD) are projected to reach 7.5 times and 61 days, respectively, in the long-term under the SSP5-8.5 scenario. The spatial distribution of HWs exhibits significant heterogeneity, with high value regions primarily distributed in eastern Xinjiang and the eastern part of southern Xinjiang. Although the HWs area is projected to expand under all scenarios, the spatial pattern is anticipated to remain largely unchanged.Conclusion: These findings provide a comprehensive assessment of future variations in HWs, which are necessary for improving regional adaptive capacity to extreme heat risk.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3