Assessment of Landslide Susceptibility of the Wiśnickie Foothills Mts. (The Flysch Carpathians, Poland) Using Selected Machine Learning Algorithms

Author:

Zydroń Tymoteusz,Demczuk Piotr,Gruchot Andrzej

Abstract

Landslides are well-known phenomena that cause significant changes to the relief of an area’s terrain, often causing damage to technical infrastructure and loss of life. One of the possible means of reducing the negative impact of landslides on people’s lives or property is to recognize areas that are prone to their occurrence. The most common approach to this problem is preparing landslide susceptibility maps. These can factor in the actual location of landslides or the causal relationship between landslides and selected environmental factors. Creating a classification of landslide-prone areas is a challenging task when landslide density is not high and the area of analysis is large. We prepared shallow 10 m × 10 m resolution landslide susceptibility maps of the Wiśnickie Foothills (Western Carpathians, Poland) using eleven different machine learning algorithms derived from the Python libraries Scikit-learn and Imbalanced-Learn. The analyzed area is characterized by a mean density of 3.4 surficial landslides (composed of soils and rocks) per km2. We also compared different approaches to imbalanced sets of data: Logistic Regression, Naive Bayes, Random Forest, AdaBoost, Bagging, ExtraTrees (Extremely Randomized Trees), Easy Ensemble, Balanced Bagging, Balanced Random Forest, RUSBoost and a hybrid model combining Random Under Sampler and Multi-layer Perceptron algorithms. The environmental factors (slope inclination and aspect, distance from rivers, lithology, soil type and permeability, groundwater table depth, profile and plan curvature, mean annual rainfall) were categorized and divided into training (70%) and testing (30%) sets. Accuracy, recall, G-mean and area under receiver operating curve (AUC) were used to validate the quality of the models. The results confirmed that algorithms based on decision tree classifiers are suitable for preparing landslide susceptibility maps. We also found that methods that generate random undersampling subsets (Easy Ensemble, Balanced Bagging, RUSBoost) and ensemble methods (Bagging, AdaBoost, Extra-Trees) both yield very similar test results to those that use full sets of data for training. Relatively high-quality results can also be obtained by integrating the Random Under Sampler algorithm with the Multi-layer Perceptron algorithm.

Funder

Ministerstwo Edukacji i Nauki

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference99 articles.

1. Improving Spatial Agreement in Machine Learning-Based Landslide Susceptibility Mapping;Adnan;Remote Sens.,2020

2. Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning;Albon;O’Reilly,2018

3. Landslide Hazard Assessment: Summary Review and New Perspectives;Aleotti;Bull. Eng. Geol. Eng.,1996

4. Selecting Optimal Conditioning Parameters for Landslide Susceptibility: an Experimental Research on Aqabat Al-Sulbat,Saudi Arabia;Alqadhi;Environ. Sci. Pollut. Res.,2021

5. Applying Different Scenarios for Landslide Spatial Modeling Using Computational Intelligence Methods;Arabameri;Environ. Earth Sci.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3