The associations of Tibetan Plateau spring snow cover with East Asian summer monsoon rainfall before and after 1990

Author:

Wijngaard René Reijer,Oh Hyoeun,Khanal Sonu,Yoon Arim,van de Berg Willem Jan,An Soon-Il

Abstract

In recent decades, the existence of a relationship between snow cover on the Tibetan Plateau (TP) and East Asian summer monsoon (EASM) rainfall has been emphasized. According to recently published studies this snow-monsoon relationship experienced a shift after 1990. Although the changing snow-monsoon relationship has been studied, the causes of the interdecadal changes remain unclear. This study assesses the associations of TP spring snow cover with EASM rainfall before and after 1990 and explores what possible mechanisms could be responsible for the interdecadal changes. Correlation and composite analyses were used to assess the strength of the relationship between TP spring snow cover and EASM rainfall and to analyze the atmospheric and land surface patterns associated with high snow cover. The outcomes suggest that the relationship between TP spring snow cover and EASM rainfall changes from partially negative to positive over all regions of the TP from 1968–1990 (P1) to 1991–2019 (P2), implying that more snow cover is associated with less (more) EASM rainfall during P1 (P2). In P1, years with high snow cover are associated with an anomalous cyclone southwest of the TP (positioned over Iran and Pakistan) in spring, which persists into the following summer, partly due to the underlying snow cover. The anomalous cyclone is accompanied by downstream anomalies over East Asia, which form a strong east-west oriented wave pattern and induce a northerly inflow of dry air over East Asia, reducing rainfall over the northern EASM domain. In P2, high snow cover years are associated with an anomalous cyclone over the western TP, which weakens and loses its significance in May-June and summer, partly due to a decline in snow forcing. Southeastward propagation of wave energy in May-June initiates the formation of an anomalous anticyclone over southeastern China and the western North Pacific. Concurrently, a meridional circulation develops over East Asia that enhances the southwesterly moisture inflow, resulting in increased EASM rainfall. The changing snow-monsoon relationship can be linked to different wave train patterns resulting from changes in the background zonal wind and meridional temperature gradients. This research contributes to a better understanding of the changing snow-monsoon relationship.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3