Modelling the Effect of Electrification on Volcanic Ash Aggregation

Author:

Pollastri Stefano,Rossi Eduardo,Bonadonna Costanza,Merrison Jonathan P.

Abstract

The fine ash released into the atmosphere (particles <63 μm) during explosive volcanic eruptions represents a significant threat for both the ecosystem and many sectors of society. In order to mitigate the associated impact, ash dispersal models need to accurately estimate ash concentration through time and space. Since most fine ash sediments in the form of aggregates, ash dispersal models require a quantitative description of ash aggregation. The physical and chemical processes involved in the collision and sticking of volcanic ash have been extensively studied in the last few decades. Among the different factors affecting volcanic particle aggregation (e.g., turbulence, particle-particle adhesion, presence of liquid and solid water), the charge carried by volcanic particles has been found to play a crucial role. However, Coulomb interactions are not yet taken into account in existing models. In order to fill this gap, we propose a strategy to take charge into account. In particular, we introduce a quantitative model for aggregation of oppositely charged micron—to millimetre-sized objects settling in still air. Our results show that the presence of charge considerably enhances the collision efficiency when one of the colliding objects is very small (<20 µm), and that the sticking efficiency is not affected by particle charge if colliding objects are either small enough (<20 µm) or large enough (>200 µm). Besides providing a theoretical framework to quantify the effect of charge, our findings demonstrate that aggregation models that do not account for electrification significantly underestimate the amount of fine ash that sediments in the form of aggregates, leading to an overestimation of the residence time of fine ash in the atmosphere after explosive volcanic eruptions.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3