Sedimentary History of Trace Metals Over the Past Half-Century in Songkhla Lake, Western Coast of the Gulf of Thailand: Anthropogenic Impacts and Contamination Assessment

Author:

Dong Ke,Qiao Shuqing,Wu Bin,Shi Xuefa,Chen Yufei,Shan Xin,Liu Shengfa,Kornkanitnan Narumol,Khokiattiwong Somkiat

Abstract

Coastal lagoons are among the most vulnerable and economically significant ecosystems on Earth. Songkhla Lake, connected with the Gulf of Thailand, is the second largest lake in Southeast Asia and supports the development of the fishery, transportation, and tourism industries in southern Thailand. With increasing anthropogenic disturbances, the lake is facing acute ecological problems and further research is needed. Here, we provide 55-year record of grain size, color reflectance, magnetic susceptibility, total organic carbon, total nitrogen, and trace element (As, Hg, Pb, Cr, Ni, Cu, and Zn) concentrations of sediment core SKL8-2 collected from Songkhla Lake. These records reveal a three-stage sedimentary and input history of trace metals under anthropogenic effects: 1) From 1964 to 1982, it was a natural terrigenous input period with a relative reduction environment when the channel connecting Songkhla Lake and the Gulf of Thailand was closed. 2) Trace metal concentrations, organic carbon content, b* value, and magnetic susceptibility changed abruptly in 1982. During 1982–2000, the sources of trace metals were more complex than during 1964–1982 and mainly came from urban wastewater, industrial effluent, and fishery discharge. 3) From 2000 to 2019, contamination signals of Pb, Hg, As, Zn, and Ni emerged in the first decade because of the rapid development and poor sewage treatment around nearby cities.

Funder

National Program on Global Change and Air-Sea Interaction

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3