Impacts of train-induced dynamic loads on goaf foundation of Qinshui coalfield

Author:

Wang Hui,Zhou Jing,Cheng Jianhua,Dun Zhilin,Dun Zhiyuan

Abstract

For the high-speed railway built in the goaf sites, if the influence depth of the additional loads reaches the collapse fault zone of the goaf foundation, the overburden rock mass above the mined area will move again, causing the surface to deform again, which seriously threatens the construction, operation, and maintenance of the high-speed railway lines. Therefore, in order to improve the safety and stability of operation of high-speed railway in goaf sites, it is essential to determine the activation deformation of the goaf foundation. In this paper, based on the additional stress method, the newly added embankment materials are taken as uniformly distributed strip static loads, and the high-speed railway in operation is regarded as the fluctuation-concentrated dynamic loads. The 1/4 vehicle vibration model with two degrees of freedom is introduced, and the influence depth of the additional loads of the goaf foundation is calculated. The criterion of activation is proposed based on the relationship between the influence depth of additional loads and the height of the collapse zone and fault zone. Conclusions drawn are as follows: i) the activation judgment criterion for the goaf foundation under the influence of high-speed railway vibration loads is recommended; ii) case study shows that the rail surface vibration model applicable to quantify the influence depth of high-speed railway mentioned previously mined-out regions; iii) the influence of rail surface irregularity on influence depth cannot be ignored; iv) the research conclusion can provide reference for site selection of high-speed railway and embankment deformation analysis.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference33 articles.

1. Mechanics of land subsidence due to groundwater pumping;Buodhu;Int. J. Numer. Anal. Methods Geomechanics,2010

2. The review of high-speed railway track foundation Dynamics;Chen;China Civ. Eng. J.,2018

3. Time-varying analysis of retaining structures enhanced with soil nails and prestressed anchors;Cheng;Buildings,2022

4. Influence of goaf on highway deformation;Du;J. Guangxi Univ. (Nat Sci Ed).,2015

5. Key pillar theory in the chain failure of residual coal pillars and its application prospect;Feng;J. China Coal Soc.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3