Experimental Study of Runoff and Sediment Yield Affected by Ridge Direction and Width of Sloping Farmland

Author:

Liu Shanshan,Qin Tianling,Lv Xizhi,Shi Xuan,Dong Biqiong,Wang Jianwei,Liu Chun

Abstract

Water and soil losses from sloping farmlands potentially contribute to water eutrophication and land degradation. However, few studies explored the combined effects of ridge direction and ridge width on surface runoff and soil losses of sloping farmlands. Twenty-seven experimental plots (8 m long and 4 m wide) with nine treatments (three ridge direction: cross ridge, longitudinal ridge, and oblique ridge; and three ridge width: 40, 60, and 80 cm) were adopted under natural rainfall conditions for two years in the Luanhe River Basin of China. Results indicated that ridge direction had significant effects on runoff and sediment yield (p < 0.05). The ridge width had no significant effect on runoff and sediment yield. No significant interaction effect was found between ridge direction and width on runoff and sediment yield of the sloping farmland based on statistical analyses. Compared with cross-ridge (CR) tillage and oblique-ridge (OR) tillage, longitudinal-ridge (LR) tillage significantly decreased runoff by 78.9% and 64.9% and soil losses by 88.2 and 83.5%, respectively (p < 0.05). The effects of ridge directions on runoff and sediment yield were related to rainfall grade. When the rainfall grade reached rainstorm, the runoff yield under CR, LR, and SR had significant differences (p < 0.05). The runoff under LR and OR treatment was 5.16 and 3.3 times, respectively, of that under CR. When the rainfall level was heavy rain or rainstorm, the sediment yield under LR was significantly greater than that under CR. The sediment yield was 13.45 times of that under CR. Cross-ridge tillage with a ridge width of 40 cm is an optimally effective measure of soil and water conservation on sloping farmland in arid and semiarid regions of China.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3