Influence mechanism of the diameter of the energy accumulation hole on the bi-directional cumulative tension blasting

Author:

Zhang Xiaohu,Jiang Yijun,Zhao Peng,Zhao Zhifeng,Hao Xiaobo

Abstract

This study focuses on evaluating the influence of the energy accumulation hole diameter on bi-directional cumulative tension blasting. Firstly, the penetration depth of bi-directional cumulative tension blasting is determined, followed by an analysis of the corresponding fracture mechanics behavior. Secondly, the Smooth Particle Hydrodynamics (SPH) method is used for numerical analysis of the bi-directional cumulative tension blasting process, and the Johnson-Holmquist constitutive model is then employed to examine the dynamic process during tensile blasting-induced cracking. This analysis provides insights into damage development, particle distribution, stress distribution, and crack propagation in the rock at different opening diameters. The findings reveal that, except for the 2 mm case, bi-directional cumulative tension blasting effectively produces directional cracks aligned with the energy accumulation direction. For hole diameters between 4–8 mm, linear through cracks form in the energy accumulation direction. However, a 2 mm diameter opening only generates short shear cracks around the blast hole. With energy accumulation hole diameters ranging from 10–14 mm, the crack propagation depth is insufficient for complete penetration, despite the presence of linear cracks in the energy accumulation direction. When diameter exceeds 14 mm, symmetrical airfoil cracks appear in non-concentrated energy directions, with larger diameters resulting in shorter crack propagation lengths. During the directional cracking process for hole diameters of 4–8 mm, explosive particles facilitate crack expansion in width and length through the action of a “gas wedge.” On-site blasting tests confirm the excellent directional pre-splitting effect of bi-directional cumulative tension blasting.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3