Geochemical Characteristics and Organic Matter Provenance of Shale in the Jurassic Da’anzhai Member, Northeastern Sichuan Basin

Author:

Li Qianwen,Liu Zhongbao,Chen Feiran,Liu Guangxiang,Zhang Dianwei,Li Peng,Wang Pengwei

Abstract

Rock pyrolysis, organic petrology, vitrinite reflectance, gas chromatography-mass spectrometry (GC-MS) analysis, and biomarker compound analysis were performed to comprehensively analyze the organic geochemical characteristics of the Jurassic Da’anzhai Member (J1da) shale strata in Yuanba and Puguang areas in the northeastern Sichuan Basin. Then the organic matter provenance and sedimentary environment were further analyzed. Finally, the significance of oil and gas exploration in J1da shale strata was discussed. Results show that the second section of the Da’anzhai Member (J1da2) has relatively high organic matter abundance (1.24%TOC), type Ⅱ-dominated organic matter type, which is the most favorable section of wells Y1 and T1 in the study area. The organic matter maturity and the hydrocarbon phases are quite different, which is 1.01%Ro dominated by oil generation in Puguang area, while it is 1.67%Ro dominated by gas generation in Yuanba area. Content and chromatograms of biomarkers including n-alkanes, tricyclic terpanes, C24 tetracyclic terpanes, and C27-C28-C29 regular steranes show that the organic matters of J1da shale strata derive from both terrestrial higher plants and lower aquatic organisms, with slightly differentiated mixed ratio of each sublayer. Characteristics of Pr/Ph, γ-cerane and hopanes compounds indicate that the overall depositional environment of J1da is a freshwater lacustrine environment, with saline lake deposits in local areas and intervals in the study area. The rapid changes of sedimentary environment have resulted in obvious stratification of water body, frequent interbeds, and strong heterogeneity of J1da shale strata. Comprehensive analysis shows the shale/mud microfacies in the semi-deep lake subfacies and shale/mud interbedded with siltstone and shell bank microfacies in the shallow lake subfacies are the most favorable sedimentary facies for J1da hydrocarbon enrichment. Deeper burial depth and higher maturity make for oil and gas enrichment with higher gas/oil ratio (GOR); moreover, the thicker intervals with organic-rich shale are favorable targets for geochemical evaluation.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3