Possible genetic relationship between Mesozoic magmatic rocks and gold mineralization in the Jiaodong Peninsula (Eastern China): constraints of magmatic evolution and physicochemical conditions

Author:

Li Jian,Dai Chang-Guo,Wang Chang-Wei,Song Ming-Chun,Wang Chang-Jiang,Li Shi-Yong,Wang Run-Sheng,Shi Hong-Jiang,Xu Kai-Lei,Wang Ping

Abstract

The Jiaodong Peninsula is China’s largest gold province and the third largest in the world. Although gold mineralization is associated with Mesozoic granites temporally and spatially, the specific genetic association remains unclear, leading to ambiguity regarding the genetic type of gold deposits. To address this issue, we conducted whole-rock major and trace elements, LA–ICP–MS zircon U–Pb geochronology and trace elements geochemical analyses on the Linglong (Linglong suite), Yashan, and Nansu (Weideshan suite) plutons, and compiled contemporaneous magmatic rock data. Our results show that the granites were emplaced at 161 ± 2, 118 ± 1, and 121 ± 2 Ma, respectively. Geochemically, these rocks exhibit high Al2O3 (12.73–14.10 wt%) content and Sr/Y (35.54–136.50) ratio, and low Y (3.26–11.20 ppm) and Yb (0.33–0.97 ppm) contents, indicating the adakitic rock properties. They were formed through partial melting of the thickened lower crust associated with subduction of the paleo-Pacific Plate. The Early Cretaceous granites contain a large amount of mafic microgranular enclaves, indicating the presence of mantle material mixing in the source area. Zircon trace elements show that the pre-mineralization magma (Linglong) had relatively low oxygen fugacity and temperature (ΔFMQ = −2.5 to +1.9, T-Ti in zircon (mean) = 740°C) compared to the mineralization magma (ΔFMQ = +0.5 to +3.9, T-Ti in zircon (mean) = 755°C). The physicochemical conditions in the pre-mineralization magma source area may be favorable for sulfide accumulation (may including gold). During the Early Cretaceous, North China Craton decratonization reached its climax, and a large number of adakitic crust-mantle mixed oxidized magma upwells, allowing for the migration and mineralization of a large amount of sulfides and gold. This model helps explain the transient, explosive, and genetic categories in Jiaodong gold deposits.

Funder

National Natural Science Foundation of China-Shandong Joint Fund

Natural Science Foundation of Shandong Province

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3