Assessing Modern Calluna Heathland Fire Temperatures Using Raman Spectroscopy: Implications for Past Regimes and Geothermometry

Author:

Theurer Thomas,Naszarkowski Noemi,Muirhead David K.,Jolley David,Mauquoy Dmitri

Abstract

Charcoal geothermometry continues to offer considerable potential in the study of palaeowildfires over decadal, centennial, millennial, and deep time scales—with substantial implications for the understanding of modern wildfire intensification. Recent developments in the application of Raman spectroscopy to carbonaceous organic material have indicated its capability to potentially reconstruct the palaeocharcoal formation temperature, and equivalent palaeowildfire pyrolysis intensity. Charcoal reflectance geothermometry (which also relies upon microstructural change with thermal maturation) has also been the subject of extensive modern evaluation, with multiple studies highlighting the key influence of energy flux on the resultant charcoal microstructure. The ability to accurately quantify modern wildfire temperatures based upon novel Raman-charcoal analyses has not yet been attempted. Using Raman band width-ratios (i.e., FWHMRa) and accompanying geothermometric trends to natural wildfire charcoals, our results identify differences between microstructurally-derived fire temperatures compared to those recorded during the fire event itself. Subsequent assessments of wildfire energy flux over time indicate no dominant influence for the observed differences, due to the inherent complexity of natural fire systems. Further analysis within this study, regarding the influence of reference pyrolysis methodology on microstructural change, also highlights the difficulty of creating accurate post-fire temperature reconstructions. The application of Raman spectroscopy, however, to the quantification of relative changes in fire temperature continues to prove effective and insightful.

Funder

University of Aberdeen

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3