Influence of Saline Fluids on the Electrical Conductivity of Olivine Aggregates at High Temperature and High Pressure and Its Geological Implications

Author:

Sun Wenqing,Dai Lidong,Hu Haiying,Jiang Jianjun,Wang Mengqi,Hu Ziming,Jing Chenxin

Abstract

The electrical conductivities of hydrous olivine (Ol) aggregates and Ol–H2O, Ol–NaCl–H2O (salinity: 1–21 wt%; fluid fraction: 5.1–20.7 vol%), Ol–KCl–H2O (salinity: 5 wt%; fluid fraction: 10.9–14.0 vol%) and Ol–CaCl2–H2O systems (salinity: 5 wt%; fluid fraction: 10.7–13.7 vol%) were measured at 2.0–3.0 GPa and 773–1073 K using a multi-anvil apparatus. The electrical conductivity of saline fluid-bearing olivine aggregates slightly increases with increasing pressure and temperature, and the electrical conductivities of both hydrous and saline fluid-bearing samples are well described by an Arrhenius relation. The dihedral angle of the saline fluids is approximately 50° in the Ol–NaCl–H2O system with 5 wt% NaCl and 5.1 vol% fluids, which implies that the fluids were interconnected along grain boundaries under the test conditions. The electrical conductivities of the Ol–NaCl–H2O system with 5 wt% NaCl and 5.1 vol% fluids are ∼two to four orders of magnitude higher than those of hydrous olivine aggregates. The salinity and fluid fraction moderately enhance the sample electrical conductivities owing to the interconnectivity of the saline fluids. The activation enthalpies of the electrical conductivities for the Ol–NaCl–H2O systems range from 0.07 to 0.36 eV, and Na+, Cl, H+, OH, and soluble ions from olivine are proposed to be the main charge carriers. For a fixed salinity and fluid fraction, the electrical conductivities of the Ol–NaCl–H2O system resemble the Ol–KCl–H2O system but are slightly higher than that of the Ol–CaCl2–H2O system. The Ol–NaCl–H2O system with a salinity of ∼5 wt% NaCl and fluid fraction larger than 1.8 vol% can be employed to reasonably explain the origin of the high-conductivity anomalies observed in mantle wedges.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

West Light Foundation of the Chinese Academy of Sciences

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference62 articles.

1. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics;Archie;Trans. Am. Inst. Min. Metall. Pet. Eng. Inc.,1942

2. Intergranular Fluid Distribution in Olivine–Liquid basalt Systems;Bulau,1982

3. Electrical Conductivity of the Pampean Shallow Subduction Region of Argentina Near 33 S: Evidence for a Slab Window;Burd;Geochem. Geophys. Geosyst.,2013

4. The Fate of Fluid Inclusions during High-Temperature Experimental Deformation of Olivine Aggregates;Carter;J. Geophys. Res. Solid Earth,2015

5. Electrical Conductivity of Wadsleyite at High Temperatures and High Pressures;Dai;Earth Planet. Sci. Lett.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3