An empirical method to compensate the NMR calibrated porosity of the tight volcanic rocks based on comprehensive laboratory studies

Author:

Xiao Yufeng,Ge Xinmin,Xiao Gaojie,Wang Chengrong,Xu Hongjun,Xiao Juanjuan,Kang Chujuan

Abstract

The nuclear magnetic resonance (NMR) response is known to deviate from the true value for the volcanic reservoirs, particularly when the pore throat size is ultralow. Consequently, the related petrophysical parameters such as porosity, permeability, and pore size distribution from NMR measurements are greatly influenced. An empirical method to correct the NMR calibrated porosity for the tight volcanic rocks is proposed after comprehensive investigations of influential factors combined with mineralogical and petrophysical analyses. The laboratory result indicates that the relative porosity deviation is negatively correlated with the geometric mean of the transversal relaxation time (T2) but positively correlated with the clay content. Moreover, both the paramagnetic materials, such as the manganese (Mn) content, and the diamagnetic materials, such as the magnesium (Mg) content, contribute to the NMR relaxation intensity reduction but with different mechanisms. The NMR calibrated porosity can be compensated through multiple regressions with these controlling factors, which can be generalized to other tight volcanic reservoirs.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3